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Abstract—In recent years, buoys have demonstrated their
significant potential in enabling data forwarding services in
maritime wireless networks, which play a critical role in ocean
monitoring activities. However, limited energy supply, complex
and dynamic channels, and restricted bandwidth remain pressing
challenges to the buoy-based maritime wireless network. In this
paper, we provide a periodical collect-wait-forward process to
coordinate the small-size data uploading from the underwater
aggregators. A reinforcement learning-based relay selection ap-
proach is proposed to minimize the expected long-term end-
to-end packet delay by jointly considering the time-varying
energy harvesting and the energy consumption of the buoys. The
simulation results show that the proposed approach can achieve
significant performance gain over other approaches in terms of
learning speed, packet delay, and energy consumption.

Index Terms—Maritime wireless network, offshore buoy, en-
ergy harvesting, low latency, reinforcement learning.

I. INTRODUCTION

Maritime activities, from shipping and fishing to offshore

energy production and oceanographic research, have become

essential drivers of global economic development. The major

enabler for these activities is the provision of broadband, low-

delay, and reliable wireless coverage to the ever-increasing

number of vessels, sensors, and actuators [1]. Unlike ter-

restrial networks, which benefit from stable infrastructure

and predictable conditions, maritime wireless networks must

contend with various environmental factors, including extreme

weather, sea state variations, and long-distance signal attenua-

tion. These factors make maritime communication a complex

and demanding field, requiring innovative solutions in network

design, communication protocols, and resource management.

A series of maritime wireless networks have been studied

to support low-latency, high-reliability and energy-constrained

communication over long distances [2]–[5].

The offshore buoy, which is more like a base station (BS)

but is closer to the vessels and sensors, has a calculation

and forwarding function. Therefore, the buoy-based maritime

wireless network has become a popular choice for ocean mon-

itoring programs due to its low-cost, capability for prolonged

deployment [6]. For example, by utilizing a buoy as a relay

to facilitate communication between a ground BS and an
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underwater target, a mixed radio frequency underwater radio-

acoustic communication relaying system is studied with the

assistance of active reconfigurable intelligent surface (RIS) [7].

However, unlike terrestrial communication infrastructures [8],

which rely on direct power transmission via established power

grids, such standard power supply solutions are unavailable

in maritime environments. An alternative way is to harvest

the renewable energy from the surrounding environments. For

example, the buoy can harvest energy from the ocean wave by

taking advantage of the relative motion between the floating

buoy and the submerged body [9].

In ocean monitoring systems, sensors periodically upload

data of status information, water quality information, plankton

information, and so on. Although those applications typically

collect only a few bits from sensors, the data uploading still

requires frequent activation of the communication module of

the buoy relays, which leads to significant energy consumption

[10]. It is worth noting that the energy consumption for

sending data is very low compared to the activation of the

communication module [11]. As a result, some data aggre-

gation methods and periodic activation transmission schemes

have been investigated to avoid frequent switching of the

communication state [12]–[15]. However, at the same time,

these approaches may introduce significant latency in data

uploading. Therefore, the trade-off between energy consump-

tion and the uploading latency remains a critical challenge for

efficient ocean monitoring.

Considering the challenges of limited energy availability

for the buoy’s recharging and the small size of the uploading

sensing data, we propose a low-latency maritime wireless net-

work for ocean monitoring via the buoy-based mesh network.

The connected buoys, which act as fixed infrastructures in the

ocean, receive the sensing data from the underwater aggrega-

tors and then forward it to their neighboring buoys or directly

upload it to the offshore BS. We provide a periodical collect-

wait-forward process to coordinate the data uploading among

the buoys and the data aggregators. To support long-term data

forwarding services, we model the energy harvesting process

of the energy-limited buoys and formulate an expected long-

term end-to-end packet delay minimization problem to balance

the packet delay and the energy consumption. Furthermore,

to tackle the large dimensions of both the state space and

action space for all buoys, a reinforcement learning (RL)-based
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Fig. 1. Buoy-based maritime wireless network for ocean monitoring.

relay selection approach is proposed consisting of an actor-

network, two Q-critic networks, and a V-critic network. The

BS determines the data forwarding path of the sensing data and

broadcasts the relay policy to all buoys. The policy entropy

is added to the reward function to improve the exploration

efficiency. The simulation results confirmed that our proposed

approach can outperform other approaches [16] in terms of

learning speed, packet delay, and energy consumption.

II. SYSTEM MODEL

The proposed low-latency maritime wireless network for

ocean monitoring is shown in Fig. 1. There exists a lot of

underwater sensors that periodically upload the sensing data,

i.e. hydrological information, to their associated data aggrega-

tors M = {1, · · · ,M}. These data are packed and forwarded

to an offshore BS via the buoy-based mesh network, which

consists of a series of connected buoys N = {1, · · · , N} over

a wide sea range. To ensure the stability of the mesh network,

the buoys are anchored to the seafloor and therefore act as

fixed infrastructures in the ocean. The energy-limited buoys

continuously harvest energy from the surrounding environment

to support the data forwarding services.

A. Data Uploading Process

In the proposed buoy-based mesh network, each buoy

forwards the data to its neighboring buoy or directly uploads

to the offshore BS at regular intervals. The periodical collect-

wait-forward data uploading process consisting of total K
transmission periods (TPs) is shown in Fig. 2. Each TP is

uniformly divided into N+1 transmission cycles and assigned

to the connected buoys sequentially to avoid transmission

collision. Let ≺ denote the transmission order in each TP,

we have i ≺ j if the transmission cycle reserved for the i-th
buoy is earlier than the j-th buoy. Furthermore, we assume

i ≺ j if i < j with ∀i, j ∈ N because the optimization of the

transmission order is beyond the scope of this paper. That is,

the time interval between (i − 1)τ and iτ is reserved for the

i-th buoy, where τ is the period of a cycle.

Each cycle is further divided into several collection slots by

a ratio of β = {β1, · · · , βM} to receive the sensing data from

the underwater aggregators sequentially, where βm ∈ [0, 1]
with ∀m ∈ M and

∑
m∈M βm = 1. In this way, each buoy

can aggregate the packets and transmit to its next hop, i.e., a

neighboring buoy or the BS, at the end of the cycle.
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Fig. 2. Data uploading process of the mesh network.

During the k-th TP, the relay selection and transmission

power of the connected buoys are denoted by a(k) =

{a(k)1 , · · · , a(k)N } and p(k) = {p(k)1 , · · · , p(k)N }, respectively.

The a
(k)
i ∈ {0} ∪ N denotes the next hop of the i-th buoy

and p
(k)
i is its transmission power. Specifically, a

(k)
i = 0

represents that the i-th buoy can directly transmit to the

BS. We denote the residual battery capacity of the buoys as

γ(k) = {γ(k)
1 , · · · , γ(k)

N }. When γ
(k)
i becomes low, the i-th

buoy will switch the state from active to inactive and the

remaining packets have to be buffered until the next TP.

B. Channel Model

1) Buoy-to-buoy channel: The buoy-to-buoy channel is

quite different from the terrestrial environments due to its

dynamic nature and unique oceanic conditions. Let H(k) =[
h
(k)
ij

]
denote the channel gain matrix with i, j ∈ N , where

h
(k)
ij is the channel gain consisting of large-scale and small-

scale factors between the i-th and j-th buoys in k-th TP. The

log-distance path loss (PL) model, which has been proved to

agree well with the large-scale model, can be characterized as

a function of the distance between the i-th and j-th buoys dij :

PL(dij) = PL(d0) + 10n log10(dij/d0), (1)

where d0 is a reference distance for the antenna far-field

to determine PL(d0) and n is the PL exponent. Note that

various distributions are provided to fit the small-scale model,

we consider the Rician distribution based on the criteria of

Kolmogorov–Smirnov statistics [17].

Therefore, the signal-to-noise ratio (SNR) of the buoy-to-

buoy channel is written as

SNR
(k)
ij =

p
(k)
i h

(k)
ij

σ2
j

, (2)

where p
(k)
i is the transmission power of the i-th buoy and σ2

j

is the noise power at the j-th buoy.

2) Aggregator-to-buoy channel: Considering that the ag-

gregator transmits data to the buoy using acoustic signals,

the attenuation of acoustic signals ηmi in an underwater

environment is given by

ηmi = (d̂mi)
κq(f)d̂mi , (3)

where d̂mi represents the distance between the m-th aggregator

and the i-th buoy, q(f) is the absorption coefficient in dB/km

calculated by Thorp’s formula subject to carrier frequency f



in kHz, and κ is the path loss exponent reflecting propagation

geometry. Therefore, the narrow-band SNR is written as

SNR(k)
m =

p̂
(k)
m

ηmiN0W
, (4)

where p̂
(k)
m denotes the transmit power of the m-th aggregator,

N0 denotes the power spectral density of ambient noise, and

W is the available bandwidth.

Since each aggregator transmits once during a cycle τ , the

amount of data transmitted from the m-th aggregator to the

i-th buoy in k-th TP containing N transmission cycles can be

expressed as

L
(k)
i = N · βmτ ·W log

(
1 + SNR(k)

m

)
. (5)

C. Delay Model

When the i-th buoy chooses the j-th buoy as the next hop,

we have a
(k)
i = j with j �= 0. The a

(k)
i = i means that there

is not any relay node selected by the i-th buoy. We introduce

I(·) as the relay selection indicator of the i-th buoy:

I

(
a
(k)
i , j

)
=

{
0, if j �= a

(k)
i ,

1, if j = a
(k)
i ,

∀j ∈ N . (6)

According to the data uploading process, as shown in

Fig. 2, we consider the following two relaying cases: 1)
when i ≺ j, the packet from the i-th buoy can be further

forwarded/uploaded by the j-th buoy in the current TP; 2)
when j ≺ i, the packet has to be buffered at the j-th buoy

until the next TP. Using Eq. (6), the amount of data buffered

at the i-th buoy before the transmission point in the k-th TP

can be represented by

ρ
(k)
i =

∑
i≺j, ∀j

I

(
a
(k−1)
j , i

)
ρ
(k−1)
j + L

(k−1)
i

+
∑

j≺i, ∀j
I

(
a
(k)
j , i

)
ρ
(k)
j . (7)

We represent the one-hop packet delay experienced from

the i-th buoy to its next hop, saying the j-th buoy, as follows:

T (i, j) =

⎧⎨
⎩

0, if j = 0,
(j − i)τ, if i ≺ j,
[(N + 1)− (i− j)] τ, if j ≺ i.

(8)

In this way, the end-to-end average packet delay in the k-th

TP can be calculated by

D(k) =

∑
i∈N

[
ρ
(k)
i · T (i, a(k)i )

]
∑

i∈N ρ
(k)
i

. (9)

D. Energy Model

To support long-term data forwarding services, the buoys

continuously harvest energy from the surrounding environ-

ment. The harvested energy exhibits variability and can be

modeled probabilistically to reflect the stochastic nature of

maritime environmental conditions. We can assume that the

energy harvesting process follows an exponential distribution

with an expected value of λ [9].

We assume each buoy has an energy queue to store avail-

able energy used for relay transmissions. The energy queue

dynamics of the i-th buoy in k-th TP is written as

γ
(k)
i =

min
[
max

(
0, γ

(k−1)
i + μ

(k−1)
i − c

(k−1)
i − p

(k−1)
i ε

)
, Bmax

]
,

(10)

where Bmax is the maximum battery capacity of an arbitrary

buoy, μ
(k)
i is the energy harvested of the i-th buoy in the k-th

TP, and ε is the time duration when transmitting an arbitrary

packet. The c
(k)
i is the energy consumption of activating the

communication model, which can be written as

c
(k)
i =

(
1− I(aki , i)

)
χ, (11)

where χ is the energy consumption to activate the com-

munication module once. Accordingly, the average energy

consumption of the buoys in the k-th TP will be

E(k) =
∑
i∈N

(
cki + pki ε

)
. (12)

E. Problem Formulation

In the proposed maritime wireless network, the objective is

to minimize the expected long-term end-to-end packet delay

by scheduling the relay selection a(k), transmission power of

the energy-limited buoys p(k), and the ratio of collection slots

β, which is given by

min
a(k),p(k),β

lim
K→∞

1

K

K∑
k=1

D(k) (13)

s.t.
∑

m∈M
βm = 1 (14)

p
(k)
i ε ≤ γ

(k)
i , ∀i, k (15)

p
(k)
i ≥ I

(
a
(k)
i , j

)
· σ2

j

h
(k)
ij

· SNRmin, ∀i, j, k (16)

a
(k)
i ∈ {0} ∪ N , ∀i, k,

βm ∈ [0, 1], ∀m ∈ M
The constraint (14) indicates that each cycle consists of

several collection slots allocated to the aggregators. The

constraint (15) guarantees that the energy consumption for

data forwarding does not exceed the residual battery capacity.

The constraint (16) derived from (2) ensures reliable data

transmission between the i-th buoy and its next hop, that is,

SNR
(k)
ij ≥ SNRmin, where SNRmin is the minimum SNR for

signal identification.

III. RL-BASED RELAY SELECTION

In the proposed buoy-based maritime wireless network, note

that the residual battery capacities of the connected buoys vary

with not only the data forwarding services but also the energy

harvesting process. Due to the large dimensions of both the

state space and action space for all buoys, we propose a RL-

based Relay Selection approach, named by RLRS, to minimize
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Fig. 3. Illustration of the RLRS approach for buoy-based maritime network.

the expected long-term end-to-end packet delay by jointly

considering the packet delay and the energy consumption.

A. Network Structure
In this approach, the BS formulates the next hop relay

strategy for all buoys based on the channel gain, the packet

delay, the number of buffered packets, and the residual battery

capacity of each buoy. Given the large dimensions of the state

space and action space for all buoys, a soft actor-critic frame-

work is provided in the RLRS approach, as illustrated in Fig.

3, consisting of four types of networks: 1) An actor-network

derives the optimal relay policy without quantization error; 2)

Two Q-critic networks estimate the Q-value corresponding to

each state-action pair, guiding the direction to update the actor-

network; 3) A V-critic network estimates the state value which

helps to mitigate potential overestimations by the Q-critic

networks, thereby stabilizing the learning process. 4) A target

V-critic network estimates the target V-value for more stable

learning. To improve the efficiency of policy exploration,

policy entropy is added to the reward function, promoting

the exploration of a wider range of potential policies before

converging to an optimal solution.

B. State
In the k-th TP, the i-th buoy estimates the channel gain

h
(k)
i = {h(k)

i1 , · · · , h(k)
iN } with other buoys, measures the

position information z
(k)
i = {z(k)x , z

(k)
y } and the residual

battery capacity γ
(k)
i and sends the status messages to the BS

through the feedback channel. Upon receiving the message

from all buoys, the BS formulates the maritime wireless

network current state s(k) given as

s(k) =
[
H(k),Z(k),γ(k),ρ(k), D(k−1)

]
, (17)

where H(k) is the estimated channel gain matrix among all

buoys with dimension N2−N , Z(k) = {z(k)
1 , · · · , z(k)

N } is the

buoys position with dimension 2N , γ(k) = {γ(k)
1 , · · · , γ(k)

N } is

the residual batteries capacity, ρ(k) = {ρ(k)1 , · · · , ρ(k)N } is the

number of buffered packets and D(k−1) is the average packet

delay of the previous TP.

Algorithm 1: RL-Based Relay Selection (RLRS)

1 Initialize θ,ωi,φ and D
2 for k = 1, 2, 3, ... do
3 Estimate channel gain H(k) of all buoys

4 Formulate state s(k) via (17)

5 Input s(k) to actor network and obtain π
(
s(k), ·;θ

)

6 Select relay vector a(k) base on π
(
s(k), ·;θ

)

7 Transmit the relay decision to buoys

8 Receive the packets from buoys and get Z(k) and γ(k)

9 Measure ρ(k) and l(k)

10 Calculate u(k) via (18)

11 Formulate the next state s(k+1)

12 Store {s(k),a(k), u(k), s(k+1)} in D
13 Sample a minibatch B from D randomly
14 Update the actor-network weights θ via (20)
15 Update the V-critic network weights φ via (19)
16 Update the Qi=1,2-critic network weights ωi via (21)
17 if k mod χ = 0 then
18 φ̂ ← ιφ+ (1− ι) φ̂
19 end
20 end

C. Action
As shown in Fig. 3, the BS inputs state s(k) to the

actor network with weights θ and obtains the relay policy

probability distribution π
(
s(k), ·;θ). Specifically, the structure

of the actor-network consists of four fully connected (FC)

layers, including an input layer with N2 + 3N + 1 neural

nodes, two hidden layers with f1,1 and f1,2 nodes, and an

output layer with N dimension. The relay decision vector

a(k) = {a(k)1 , · · · , a(k)N } is chosen based on the actor-network

outputs π
(
s(k), ·;θ).

D. Utility
The BS transmits the relay policy to each buoy. Each buoy

packages the sensor data from the aggregators, then receives

and aggregates packets from other buoys, and finally forwards

the packet to the next hop or upload to the BS according to

the relay policy. At the end of the TP, using Eqs. (9)(12), the

BS measures the utility of the buoy-based network as

u(k) = −D(k) − wE(k), (18)

where w denotes the importance of the packet delay and the

buoy energy consumption.

E. Update
The overall description of the proposed RLRS approach

is shown in Algorithm 1. The BS formulates the next

state s(k+1) and stores the relay experiences as b(k) =(
s(k),a(k), s(k+1), u(k)

)
into the replay pool D. A minibatch

B with J experiences are randomly sampled from the replay

pool D to update the weights of the actor-network θ via policy

gradient by

θ ← argmax
θ′

Ee(j)∈B
(
Q0

(
s(j), π

(
s(j), ·;θ′

)
;ω0

)
−α lnπ

(
s(j), ·;θ′

))
, (20)
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Ee(j)∈B

⎛
⎜⎝V

(
s(j);φ

)
−

∑
a′∈π(s(j);θ)

min
i=0,1

Qi

(
s(j),a′;ωi

)
− α lnπ

(
s(j),a′;θ

)⎞⎟⎠
2
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Fig. 4. Performance of the data uploading process: N = 5, λ = 0.14.

where α ∈ [0, 1] represents the importance between the Q-

value estimated by the critic network and the policy entropy.

The minibatch B is also used to update the Qi=1,2-critic

networks with weights ωi=1,2 and V-critic network with

weights φ via the stochastic gradient descent by minimizing

the mean square error between the target and estimated Q-

value. For example, the Q1-critic network is structured with

four FC layers. The input layer contains N2+4N+1 neurons,

representing the input as the concatenation of state and action,

followed by two hidden layers with f2,1 and f2,2 neurons,

respectively. Finally, the output layer with N dimensions is

the value of all actions in the given state. For the V-critic

network, the structure of V-critic network also consists of

four FC layers, including an input layer with N2 + 3N + 1
neural nodes, two hidden layers with f3,1 and f3,2 nodes and

an output layer with 1 dimension is the value of the state.

The Q2-critic network and target V-critic network have the

same network structures as the Q1-critic network and V-critic

network, respectively.

The V-critic network is updated by (19) and the Qi=1,2-critic

network is updated by

ωi ← argmin
ω′

Ee(j)∈B
(
u(j) + δV̂

(
s(j+1); φ̂

)
−Qi

(
s(j),a(j);ωi

))2

, (21)

where δ is the discount factor to balance the received utility

and the future utility in the learning process. To slowly track

the weights of the V-critic network, the weights of V-target

critic networks φ̂ are updated via the soft update strategy with

learning rate ι.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify the

performance of the proposed RLRS approach. We consider

a maritime wireless network, the BS is located at (0, 0) in

meter (m), 5 connected buoys and 5 aggregators are uniformly

distributed on a 3km×3km plane. The transmission period of

TABLE I
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
Channel bandwidth W 10MHZ
SNR threshold SNRmin 20dB
Noise power σ2 −104dBm [4]
Maximum buoy battery capacity Bmax 10J
Energy harvesting parameter λ 14W [6]

packets TP is set to 300ms, a cycle of the period is set to

60ms, and the time duration when transmitting an arbitrary

packet ε is set to 10ms. Some key simulation parameters are

listed in Table I. We compare four approaches: 1) No Relay
(NR), in which the buoys upload the packet to the BS directly;

2) Proximity Principle (PP), in which each buoy forward the

packet to its closest neighboring buoy or upload to the BS;

3) Q-learning-based Routing Control (QRC), which adaptively

evaluates paths depending on the flow deadline constraints and

carefully designs reward function to meet the individual flow

deadlines [16]; 4) RLRS, the proposed approach. Note that the

NR approach may suffer from high latency and low reliability

due to the unbalanced traffic and battery power limitations.

The PP approach leverages the proximity advantage to reduce

transmission but may lead to battery drain of certain buoys

performing frequent relays.

As shown in Fig. 4, our proposed RLRS approach reduces

average packet delay by 35.1% from 0.55s to 0.25s with 22.3%
less average energy consumption over 3000 TPs compared

with QRC after 2000 TPs. The is because the policy entropy

can find a better balance between exploring new actions and

existing experience and the neural network accelerates the

learning of buoys relay selection. The NR and PP approaches

could not dynamically adjust relay decisions based on the

current buoy status, resulting in highest packet delay.

The performance versus energy harvesting parameter λ and

the number of buoys is shown in Fig. 5 and Fig. 6, respectively.

In general, the proposed RLRS approach can outperform other
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Fig. 5. Performance versus energy harvesting parameter λ: K = 3000.

approaches in term of the average packet delay. Specifically,

compared with QRC in Fig. 5, the proposed RLRS approach

decreases 36.1% average packet delay and 26.4% average

energy consumption when λ = 0.1. As shown in Fig. 6,

with the increase of the buoys, the proposed RLRS approach

decreases 40.8% average packet delay and 11.1% average

energy consumption compared with QRC in 11-buoys system.

V. CONCLUSIONS

A buoy-based maritime wireless network is studied for

ocean monitoring and a periodical collect-wait-forward pro-

cess is provided to coordinate the data uploading among

the buoys and the data aggregators. To support long-term

data forwarding services, a RL-based relay selection approach

is proposed to minimize the expected long-term end-to-end

packet delay. The simulation results confirmed that our pro-

posed approach can outperform other approaches in terms of

learning speed, packet delay, and energy consumption.
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