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Abstract—In recent years, buoys have demonstrated their
significant potential in enabling data forwarding services in
maritime wireless networks, which play a critical role in ocean
monitoring activities. However, limited energy supply, complex
and dynamic channels, and restricted bandwidth remain pressing
challenges to the buoy-based maritime wireless network. In this
paper, we provide a periodical collect-wait-forward process to
coordinate the small-size data uploading from the underwater
aggregators. A reinforcement learning-based relay selection ap-
proach is proposed to minimize the expected long-term end-
to-end packet delay by jointly considering the time-varying
energy harvesting and the energy consumption of the buoys. The
simulation results show that the proposed approach can achieve
significant performance gain over other approaches in terms of
learning speed, packet delay, and energy consumption.

Index Terms—Maritime wireless network, offshore buoy, en-
ergy harvesting, low latency, reinforcement learning.

I. INTRODUCTION

Maritime activities, from shipping and fishing to offshore
energy production and oceanographic research, have become
essential drivers of global economic development. The major
enabler for these activities is the provision of broadband, low-
delay, and reliable wireless coverage to the ever-increasing
number of vessels, sensors, and actuators [1]. Unlike ter-
restrial networks, which benefit from stable infrastructure
and predictable conditions, maritime wireless networks must
contend with various environmental factors, including extreme
weather, sea state variations, and long-distance signal attenua-
tion. These factors make maritime communication a complex
and demanding field, requiring innovative solutions in network
design, communication protocols, and resource management.
A series of maritime wireless networks have been studied
to support low-latency, high-reliability and energy-constrained
communication over long distances [2]-[5].

The offshore buoy, which is more like a base station (BS)
but is closer to the vessels and sensors, has a calculation
and forwarding function. Therefore, the buoy-based maritime
wireless network has become a popular choice for ocean mon-
itoring programs due to its low-cost, capability for prolonged
deployment [6]. For example, by utilizing a buoy as a relay
to facilitate communication between a ground BS and an
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underwater target, a mixed radio frequency underwater radio-
acoustic communication relaying system is studied with the
assistance of active reconfigurable intelligent surface (RIS) [7].
However, unlike terrestrial communication infrastructures [8],
which rely on direct power transmission via established power
grids, such standard power supply solutions are unavailable
in maritime environments. An alternative way is to harvest
the renewable energy from the surrounding environments. For
example, the buoy can harvest energy from the ocean wave by
taking advantage of the relative motion between the floating
buoy and the submerged body [9].

In ocean monitoring systems, sensors periodically upload
data of status information, water quality information, plankton
information, and so on. Although those applications typically
collect only a few bits from sensors, the data uploading still
requires frequent activation of the communication module of
the buoy relays, which leads to significant energy consumption
[10]. It is worth noting that the energy consumption for
sending data is very low compared to the activation of the
communication module [11]. As a result, some data aggre-
gation methods and periodic activation transmission schemes
have been investigated to avoid frequent switching of the
communication state [12]-[15]. However, at the same time,
these approaches may introduce significant latency in data
uploading. Therefore, the trade-off between energy consump-
tion and the uploading latency remains a critical challenge for
efficient ocean monitoring.

Considering the challenges of limited energy availability
for the buoy’s recharging and the small size of the uploading
sensing data, we propose a low-latency maritime wireless net-
work for ocean monitoring via the buoy-based mesh network.
The connected buoys, which act as fixed infrastructures in the
ocean, receive the sensing data from the underwater aggrega-
tors and then forward it to their neighboring buoys or directly
upload it to the offshore BS. We provide a periodical collect-
wait-forward process to coordinate the data uploading among
the buoys and the data aggregators. To support long-term data
forwarding services, we model the energy harvesting process
of the energy-limited buoys and formulate an expected long-
term end-to-end packet delay minimization problem to balance
the packet delay and the energy consumption. Furthermore,
to tackle the large dimensions of both the state space and
action space for all buoys, a reinforcement learning (RL)-based
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Fig. 1. Buoy-based maritime wireless network for ocean monitoring.

relay selection approach is proposed consisting of an actor-
network, two Q-critic networks, and a V-critic network. The
BS determines the data forwarding path of the sensing data and
broadcasts the relay policy to all buoys. The policy entropy
is added to the reward function to improve the exploration
efficiency. The simulation results confirmed that our proposed
approach can outperform other approaches [16] in terms of
learning speed, packet delay, and energy consumption.

II. SYSTEM MODEL

The proposed low-latency maritime wireless network for
ocean monitoring is shown in Fig. 1. There exists a lot of
underwater sensors that periodically upload the sensing data,
i.e. hydrological information, to their associated data aggrega-
tors M = {1,---, M}. These data are packed and forwarded
to an offshore BS via the buoy-based mesh network, which
consists of a series of connected buoys N' = {1,--- , N} over
a wide sea range. To ensure the stability of the mesh network,
the buoys are anchored to the seafloor and therefore act as
fixed infrastructures in the ocean. The energy-limited buoys
continuously harvest energy from the surrounding environment
to support the data forwarding services.

A. Data Uploading Process

In the proposed buoy-based mesh network, each buoy
forwards the data to its neighboring buoy or directly uploads
to the offshore BS at regular intervals. The periodical collect-
wait-forward data uploading process consisting of total K
transmission periods (TPs) is shown in Fig. 2. Each TP is
uniformly divided into N +1 transmission cycles and assigned
to the connected buoys sequentially to avoid transmission
collision. Let < denote the transmission order in each TP,
we have ¢ < j if the transmission cycle reserved for the ¢-th
buoy is earlier than the j-th buoy. Furthermore, we assume
1 < jif 1 < j with Vi, j € A because the optimization of the
transmission order is beyond the scope of this paper. That is,
the time interval between (i — 1)7 and 47 is reserved for the
i-th buoy, where 7 is the period of a cycle.

Each cycle is further divided into several collection slots by
a ratio of 3 = {f1,- -+, B} to receive the sensing data from
the underwater aggregators sequentially, where (3, € [0, 1]
with Vm € M and ) _\(Bm = 1. In this way, each buoy
can aggregate the packets and transmit to its next hop, i.e., a
neighboring buoy or the BS, at the end of the cycle.
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Fig. 2. Data uploading process of the mesh network.

During the k-th TP, the relay selection and transmission
power of the connected buoys are denoted by a®) =

{af”,--- al’} and p® = {p{),--- p{’}, respectively.

(k)

The a;, ' € {0} UN denotes the next hop of the i-th buoy

and pgk) is its transmission power. Specifically, agk) =0
represents that the ¢-th buoy can directly transmit to the
BS. We denote the residual battery capacity of the buoys as
A0 = (4% 0y #Y When 4" becomes low, the i-th
buoy will switch the state from active to inactive and the
remaining packets have to be buffered until the next TP.

B. Channel Model

1) Buoy-to-buoy channel: The buoy-to-buoy channel is
quite different from the terrestrial environments due to its
dynamic nature and unique oceanic conditions. Let H (k) =

[hl(?)] denote the channel gain matrix with 7,5 € A/, where

hl(-f) is the channel gain consisting of large-scale and small-
scale factors between the i-th and j-th buoys in k-th TP. The
log-distance path loss (PL) model, which has been proved to
agree well with the large-scale model, can be characterized as
a function of the distance between the i-th and j-th buoys d;;:

PL(d;j) = PL(do) + 10nlogyo(dij/do), (1)

where dy is a reference distance for the antenna far-field
to determine PL(dy) and n is the PL exponent. Note that
various distributions are provided to fit the small-scale model,
we consider the Rician distribution based on the criteria of
Kolmogorov—Smirnov statistics [17].

Therefore, the signal-to-noise ratio (SNR) of the buoy-to-
buoy channel is written as
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where pl(»k) is the transmission power of the ¢-th buoy and 032-

is the noise power at the j-th buoy.

2) Aggregator-to-buoy channel: Considering that the ag-
gregator transmits data to the buoy using acoustic signals,
the attenuation of acoustic signals 7),,; in an underwater
environment is given by

Nmi = (‘imi)KQ(f)dm7 3)

where d; represents the distance between the m-th aggregator
and the i-th buoy, ¢(f) is the absorption coefficient in dB/km
calculated by Thorp’s formula subject to carrier frequency f



in kHz, and « is the path loss exponent reflecting propagation
geometry. Therefore, the narrow-band SNR is written as
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where ;35,’? denotes the transmit power of the m-th aggregator,
Ny denotes the power spectral density of ambient noise, and
W is the available bandwidth.

Since each aggregator transmits once during a cycle 7, the
amount of data transmitted from the m-th aggregator to the
i-th buoy in k-th TP containing N transmission cycles can be
expressed as

L® = N Bur - Wlog (1 + SNR;’:)). 5)

C. Delay Model

When the -th buoy chooses the j-th buoy as the next hop,
we have agk) = j with j # 0. The agk) = 4 means that there
is not any relay node selected by the ¢-th buoy. We introduce
I(-) as the relay selection indicator of the i-th buoy:

) 0, ifj#a, .
I(al™, c BTF G L e, 6
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According to the data uploading process, as shown in
Fig. 2, we consider the following two relaying cases: /)
when ¢ < j, the packet from the i-th buoy can be further
forwarded/uploaded by the j-th buoy in the current TP; 2)
when j < 14, the packet has to be buffered at the j-th buoy
until the next TP. Using Eq. (6), the amount of data buffered
at the i-th buoy before the transmission point in the k-th TP
can be represented by

k k—1
P = 3 1(af
i<, Vj
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We represent the one-hop packet delay experienced from
the i-th buoy to its next hop, saying the j-th buoy, as follows:

0, if j =0,
T(i,j) =4 (G-, ifi < j, (3
(N+1)—(i—9)]7, ifj=<i.

In this way, the end-to-end average packet delay in the k-th
TP can be calculated by
(i, a)]
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D. Energy Model

To support long-term data forwarding services, the buoys
continuously harvest energy from the surrounding environ-
ment. The harvested energy exhibits variability and can be
modeled probabilistically to reflect the stochastic nature of
maritime environmental conditions. We can assume that the
energy harvesting process follows an exponential distribution
with an expected value of A\ [9].

We assume each buoy has an energy queue to store avail-
able energy used for relay transmissions. The energy queue
dynamics of the i-th buoy in k-th TP is written as

k
Wb =
- pi(‘kil)e) ) Bmax:| )

(10)

where B, ax 1S the maximum battery capacity of an arbitrary
buoy, ") is the energy harvested of the i-th buoy in the k-th
TP, and € is the time duration when transmitting an arbitrary
packet. The cgk) is the energy consumption of activating the

communication model, which can be written as
e = (1-1(ak,0))x, (11)

where x is the energy consumption to activate the com-
munication module once. Accordingly, the average energy
consumption of the buoys in the k-th TP will be

EW = 37 (ck + pke).
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E. Problem Formulation

In the proposed maritime wireless network, the objective is
to minimize the expected long-term end-to-end packet delay
by scheduling the relay selection a*), transmission power of
the energy-limited buoys p*), and the ratio of collection slots
(3, which is given by

K
1
lim — (k)
a(®) poc) ﬁKgnoo K Zl b (13)
st Y Bn=1 (14)
meM

pMe <" vik (15)

k k o3
P 2 1(a,5) - o5 - SNRyn, Vi ik (16)
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The constraint (14) indicates that each cycle consists of
several collection slots allocated to the aggregators. The
constraint (15) guarantees that the energy consumption for
data forwarding does not exceed the residual battery capacity.
The constraint (16) derived from (2) ensures reliable data
transmission between the i-th buoy and its next hop, that is,
SNR{" > SNRyin, where SNRyjy is the minimum SNR for
signal identification.

III. RL-BASED RELAY SELECTION

In the proposed buoy-based maritime wireless network, note
that the residual battery capacities of the connected buoys vary
with not only the data forwarding services but also the energy
harvesting process. Due to the large dimensions of both the
state space and action space for all buoys, we propose a RL-
based Relay Selection approach, named by RLRS, to minimize
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Fig. 3. Illustration of the RLRS approach for buoy-based maritime network.

the expected long-term end-to-end packet delay by jointly
considering the packet delay and the energy consumption.

A. Network Structure

In this approach, the BS formulates the next hop relay
strategy for all buoys based on the channel gain, the packet
delay, the number of buffered packets, and the residual battery
capacity of each buoy. Given the large dimensions of the state
space and action space for all buoys, a soft actor-critic frame-
work is provided in the RLRS approach, as illustrated in Fig.
3, consisting of four types of networks: 1) An actor-network
derives the optimal relay policy without quantization error; 2)
Two Q-critic networks estimate the Q-value corresponding to
each state-action pair, guiding the direction to update the actor-
network; 3) A V-critic network estimates the state value which
helps to mitigate potential overestimations by the Q-critic
networks, thereby stabilizing the learning process. 4) A target
V-critic network estimates the target V-value for more stable
learning. To improve the efficiency of policy exploration,
policy entropy is added to the reward function, promoting
the exploration of a wider range of potential policies before
converging to an optimal solution.

B. State

In the k-th TP, the i-th buoy estimates the channel gain
hgk) {hz(f),-~- ,hgk)} with other buoys, measures the
position information in{k) = {zg(gk),zg(,k)} and the residual
battery capacity *yi(k) and sends the status messages to the BS
through the feedback channel. Upon receiving the message
from all buoys, the BS formulates the maritime wireless

network current state s(*) given as
sk — H(k), Z(k)77(k)7p(k)7D(k—1)} 7 A7)

where H®) is the estimated channel gain matrix among all

buoys with dimension N2— N, 2% = {z{" ... 20} is the
buoys position with dimension 2N, v*) = {7§k), e ,fy](\];)} is
the residual batteries capacity, p*) = {pgk), e ,pg\lﬁ)} is the

number of buffered packets and D(*~1) is the average packet
delay of the previous TP.

Algorithm 1: RL-Based Relay Selection (RLRS)

1 Initialize 0, w,;, ¢ and D
2 for k=1,2,3,... do

3 Estimate channel gain H ) of all buoys

4 Formulate state s*) via (17)

5 Input s to actor network and obtain 7 (s“”, - 0)
6 Select relay vector a™ base on 7 (s““), 5 0)

7 Transmit the relay decision to buoys

8 Receive the packets from buoys and get Z*) and 'y(k)
9 Measure p*) and 1.

10 Calculate ©® via (18)

11 Formulate the next state s(**1)

12 Store {.s(k),a““),u(k)7 s(kﬂ)} in D

13 Sample a minibatch B from D randomly

14 Update the actor-network weights 6 via (20)
15 Update the V-critic network weights ¢ via (19)

16 Update the Q;—1 2-critic network weights w; via (21)
17 if £ mod x = 0 then

18 \ p—1p+(1—1)@

19 end

20 end

C. Action

As shown in Fig. 3, the BS inputs state s(*) to the
actor network with weights @ and obtains the relay policy
probability distribution 7 (s(*), -; @). Specifically, the structure
of the actor-network consists of four fully connected (FC)
layers, including an input layer with N2 + 3N + 1 neural
nodes, two hidden layers with f;; and f; 2 nodes, and an
output layer with N dimension. The relay decision vector

a®) = {agk), - ,ag\];)} is chosen based on the actor-network
outputs 7 (s(k), - 0).
D. Utility

The BS transmits the relay policy to each buoy. Each buoy
packages the sensor data from the aggregators, then receives
and aggregates packets from other buoys, and finally forwards
the packet to the next hop or upload to the BS according to
the relay policy. At the end of the TP, using Eqs. (9)(12), the
BS measures the utility of the buoy-based network as

u® = —_pk) _ wE(k), (18)

where w denotes the importance of the packet delay and the
buoy energy consumption.

E. Update

The overall description of the proposed RLRS approach
is shown in Algorithm 1. The BS formulates the next
state s(**1) and stores the relay experiences as b =
(8™, a® sk+1D) 4(*)) into the replay pool D. A minibatch
B with .J experiences are randomly sampled from the replay
pool D to update the weights of the actor-network 6 via policy
gradient by

0 «— argmaxE ;) (Qo (s(j),w (S(j)7 .;0’) ;wo)
0/

—alnm (s(j),-;al)) . (20)
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Fig. 4. Performance of the data uploading process: N = 5, A = 0.14.

where o € [0,1] represents the importance between the Q-
value estimated by the critic network and the policy entropy.

The minibatch B is also used to update the Q;—; -critic
networks with weights w;—; o and V-critic network with
weights ¢ via the stochastic gradient descent by minimizing
the mean square error between the target and estimated Q-
value. For example, the Q;-critic network is structured with
four FC layers. The input layer contains N2+4N +1 neurons,
representing the input as the concatenation of state and action,
followed by two hidden layers with f>; and f5 > neurons,
respectively. Finally, the output layer with N dimensions is
the value of all actions in the given state. For the V-critic
network, the structure of V-critic network also consists of
four FC layers, including an input layer with N2 + 3N + 1
neural nodes, two hidden layers with f3 1 and f3 2 nodes and
an output layer with 1 dimension is the value of the state.
The Qs-critic network and target V-critic network have the
same network structures as the Qq-critic network and V-critic
network, respectively.

The V-critic network is updated by (19) and the Q;— »-critic
network is updated by

w; < argminE_ ) (u(j) +6V (8(j+1)§ QZ))
w/

—Q; (s(j)7 a(j);wi)>2 . (2D

where ¢ is the discount factor to balance the received utility
and the future utility in the learning process. To slowly track
the weights of the V-critic network, the weights of V-target
critic networks qﬁ are updated via the soft update strategy with
learning rate ¢.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify the
performance of the proposed RLRS approach. We consider
a maritime wireless network, the BS is located at (0, 0) in
meter (m), 5 connected buoys and 5 aggregators are uniformly
distributed on a 3kmx3km plane. The transmission period of

TABLE 1
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
Channel bandwidth W 10MHZ
SNR threshold SNRyin 20dB

Noise power o? —104dBm [4]
Maximum buoy battery capacity Bmax  10J
Energy harvesting parameter A 14W [6]

packets TP is set to 300ms, a cycle of the period is set to
60ms, and the time duration when transmitting an arbitrary
packet € is set to 10ms. Some key simulation parameters are
listed in Table I. We compare four approaches: 1) No Relay
(NR), in which the buoys upload the packet to the BS directly;
2) Proximity Principle (PP), in which each buoy forward the
packet to its closest neighboring buoy or upload to the BS;
3) Q-learning-based Routing Control (QRC), which adaptively
evaluates paths depending on the flow deadline constraints and
carefully designs reward function to meet the individual flow
deadlines [16]; 4) RLRS, the proposed approach. Note that the
NR approach may suffer from high latency and low reliability
due to the unbalanced traffic and battery power limitations.
The PP approach leverages the proximity advantage to reduce
transmission but may lead to battery drain of certain buoys
performing frequent relays.

As shown in Fig. 4, our proposed RLRS approach reduces
average packet delay by 35.1% from 0.55s to 0.25s with 22.3%
less average energy consumption over 3000 TPs compared
with ORC after 2000 TPs. The is because the policy entropy
can find a better balance between exploring new actions and
existing experience and the neural network accelerates the
learning of buoys relay selection. The NR and PP approaches
could not dynamically adjust relay decisions based on the
current buoy status, resulting in highest packet delay.

The performance versus energy harvesting parameter A and
the number of buoys is shown in Fig. 5 and Fig. 6, respectively.
In general, the proposed RLRS approach can outperform other



—a—NR
——PP
——QRC
——RLRS

'\\"’—-

0.1 0.15 02
A (W)

(a) Packet delay Zf D) /K

Average packet delay (s)

0.25 0.3

0.32

—a—NR
——PP
——QRC
——RLRS

I

P —

0.1 0.15 02
AW)

(b) Energy consumption ZkK E®) /K

o
W

2
3

o
=

I
¥}
=

Average energy consumption (J)
=3
o
S

e
¥}

0.25 0.3

Fig. 5. Performance versus energy harvesting parameter A\: K = 3000.

approaches in term of the average packet delay. Specifically,
compared with QRC in Fig. 5, the proposed RLRS approach
decreases 36.1% average packet delay and 26.4% average
energy consumption when A = 0.1. As shown in Fig. 6,
with the increase of the buoys, the proposed RLRS approach
decreases 40.8% average packet delay and 11.1% average
energy consumption compared with QRC in 11-buoys system.

V. CONCLUSIONS

A buoy-based maritime wireless network is studied for
ocean monitoring and a periodical collect-wait-forward pro-
cess is provided to coordinate the data uploading among
the buoys and the data aggregators. To support long-term
data forwarding services, a RL-based relay selection approach
is proposed to minimize the expected long-term end-to-end
packet delay. The simulation results confirmed that our pro-
posed approach can outperform other approaches in terms of
learning speed, packet delay, and energy consumption.
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